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A B S T R A C T

Characterizing the relative severity of human disturbance in watersheds is often part of stream

assessments and is frequently done with the aid of Geographic Information System (GIS)-derived data.

However, the choice of variables and how they are used to quantify disturbance are often subjective. In

this study, we developed a number of disturbance indices by testing sets of variables, scoring methods,

and weightings of 33 potential disturbance factors derived from readily available GIS data. The indices

were calibrated using 770 watersheds located in the western United States for which the severity of

disturbance had previously been classified from detailed local data by the United States Environmental

Protection Agency (USEPA) Environmental Monitoring and Assessment Program (EMAP). The indices

were calibrated by determining which variable or variable combinations and aggregation method best

differentiated between least- and most-disturbed sites. Indices composed of several variables performed

better than any individual variable, and best results came from a threshold method of scoring using six

uncorrelated variables: housing unit density, road density, pesticide application, dam storage, land cover

along a mainstem buffer, and distance to nearest canal/pipeline. The final index was validated with 192

withheld watersheds and correctly classified about two-thirds (68%) of least- and most-disturbed sites.

These results provide information about the potential for using a disturbance index as a screening tool

for a priori ranking of watersheds at a regional/national scale, and which landscape variables and

methods of combination may be most helpful in doing so.

Published by Elsevier Ltd.
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1. Introduction

Stream ecosystems are profoundly influenced by human
activities. Disturbances include point-source pollution, conversion
of natural vegetation to developed land, nutrient and pesticide
input from agricultural and urban sources, mining and mineral
extraction operations, channel modification, and water impound-
ment. These activities often change the timing or amount of
streamflow, increase runoff, erosion, and sedimentation, alter
water temperature and chemistry, and introduce contaminants
(Allan, 2004). The effect is a cumulative and often synergistic
impact on water quality and quantity, habitat, and biotic
assemblages (Stein et al., 2002). Identifying the nature and extent
of human disturbances is a critical component in many ecological
assessments.

Several studies have attempted to quantify the extent of human
stressors and disturbances in an area with a single variable. The
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primary method of doing so is the creation of a ‘‘disturbance index’’
based on Geographic Information System (GIS)-derived data (Stein
et al., 2002; Danz et al., 2005; Host et al., 2005; Wang et al., 2008).
This allows for an objective integration of anthropogenic
disturbance factors over large areas in a way that would be
difficult to achieve with field studies. For ecological assessment, a
disturbance index may be useful as a ranking or screening tool
(Sanderson et al., 2002; Stein et al., 2002; Brown and Vivas, 2005;
Wilhelm et al., 2005; Danz et al., 2007) or for an a priori

classification of sites (Host et al., 2005; Wang et al., 2008). The
accuracy of the index and success of classification are dependent
on the availability, quality, time period, and scale of the GIS data,
and the specific techniques employed.

Although a variety of approaches have been used in creating
disturbance indices, several basic decisions are required: (1) which
variable or combinations of variables should be included in the
index, (2) how or if they should be weighted, and (3) how data
values should be translated to an index score. It is clear that the
performance of an index may vary significantly with the method
chosen to score values (Blocksum, 2003). Given a set of GIS data it is
possible to create any number of disturbance indices – based on
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different variables, weightings, or methods of scoring or combina-
tion – which rank sites very differently. Further it is not necessarily
known whether a multimetric index (an index composed of
multiple variables) provides a better ranking than any individual
variable, as in some cases a single variable (e.g. percent impervious
surface) may adequately integrate multiple sources of human
influence at some scales (Karr and Chu, 1999). Although biological
data have been used in some cases to calibrate disturbance indices
(Wang et al., 2008), most studies do not have access to externally
classified watersheds for calibration.

Our goal was to compare and contrast methods of creating a
disturbance index to determine those which provide the best
discrimination between least- and most-disturbed watersheds
that had previously been classified as such by the U.S. Environ-
mental Protection Agency (USEPA) (2005). In addition we also
evaluated the influence of various methods on the performance of
the indices: (1) the use of correlated versus uncorrelated variables,
(2) index scoring and weighting methods, (3) assessing which
variables most strongly control the index, and (4) determining
whether a multimetric index is a more powerful tool than any
individual variable.

2. Methods

2.1. Study area and watershed classifications

We used data from 962 watersheds throughout the Western
United States. These data were from watershed delineations for
streams that had been randomly selected by the USEPA Environ-
mental Monitoring and Assessment Program (EMAP; U.S. Envir-
onmental Protection Agency, 2005). Streams and attendant
Fig. 1. U.S. Environmental Protection Agency (USEPA) sam
watersheds were therefore representative of 1:100,000 scale
perennial streams throughout the region, which spans 12 states
(Fig. 1). Watersheds ranged in size from 0.6 to 35,110 km2 (median
44 km2).

Sites were classified into three levels of overall disturbance by
the EMAP. Sites classified as ‘‘reference’’ (hereafter REF) were
considered to be representative of near natural or least disturbed
conditions in their respective ecoregions. Conversely, sites
classified as ‘‘most disturbed’’ (hereafter DIS) were considered to
be representative of the most altered or modified by human
activities. A third class, ‘‘intermediate’’ (hereafter MED), repre-
sented watersheds that have been altered to some intermediate
degree. Sites were classified using an ecoregion-specific screening
process based primarily on chemical and physical data collected on
site (U.S. Environmental Protection Agency, 2005; Whittier et al.,
2007). The process also included data on site-specific alterations
based on aerial photography, field notes, and roundtable discus-
sions among several principle USEPA investigators (Whittier et al.,
2007). The final USEPA classification was based on independent
classification by three investigators, one of whom also based his
classification partly on GIS-derived data (percent agriculture and
urban land cover in watershed and road density) (written
communication, A. Herlihy, January 29, 2008). Because of the
thoroughness of their review, and that only a portion of one-third
of the decision-making process for classifying the sites was based
on GIS data, we considered the USEPA evaluation to be as complete
and independent an evaluation of the overall degree of physical
and chemical disturbance in the watersheds for these sites as was
possible to obtain. Consequently, our objective was to evaluate
how well variations of disturbance indices based only on
watershed-scale GIS data could reproduce this classification.
pling site locations of watersheds used in this study.



Table 2
Disturbance variables description and source.

Source of variable (reference; scale) Variable abbreviation

Census 2000 (GeoLytics, 2001; Census block)

Population density, persons/km2 POPDEN

Housing unit density, housing units/km2 HUDEN

Census 2000 TIGER roads (GeoLytics, 2001; 1:100,000)

Road density in watershed, km/km2 ROADDEN

National Land Cover Data 1992, enhanced (NLCDe) (Price et al., 2006; 30-m pixel)

Urban land cover in watershed, percent URB_BAS

Crops land cover in watershed, percent CROPS_BAS

Pasture land cover in watershed, percent PAST_BAS

Mining/transitional land cover in watershed, percent MINING_BAS

Urban + crops land cover in watershed, percent URBC_BAS

Urban + crops + pasture land cover in

watershed, percent

URBCP_BAS

Urban land cover in mainstem 600-m buffer, percent URB_MAINS

Urban + crops land cover in 600-m mainstem buffer,

percent

URBC_MAINS

Urban + crops + pasture land cover in

600-m mainstem buffer, percent

URBCP_MAINS

USGS 1997 agricultural pesticide data (USGS, 2007; 1-km pixel)

Sum of 43 most major pesticide compounds, kg/km2 PESTIC

USGS (2002) nutrient data (Ruddy et al., 2006; 1-km pixel)

Nitrogen from fertilizer and manure, kg/km2 NITROGEN

Phosphorus from fertilizer and manure, kg/km2 PHOSPH

Nitrogen + phosphorus, kg/km2 N_P

National Resources Inventory-derived, 1992 (USGS, 2002; 1-km pixel)

Land using NRI agricultural practice Surface

Drainage Field Ditches, percent

NRI_DITCH

USGS NHDPlus 100 k streams (USEPA, 2006c; 1:100,000)

Streams coded ‘‘Canal/Ditch/Pipeline’’ in

watershed, percent

CANALS_BAS

Streams coded ‘‘Canal/Ditch/Pipeline’’ on

mainstem, percent

CANALS_MAINS

Streams coded ‘‘Artificial Path’’ in

watershed, percent

ARTPATH_BAS

Linear distance of sampling site to nearest

canal/ditch/pipeline, m

DIST_CANAL_NEAR

Average linear distance of sampling site to all

canals/ditches/pipelines, m

DIST_CANAL_AVG

EPA National Pollutant Discharge Elimination System (NPDES) data

(USEPA, 2006b; 1:100,000)

Density of discharge sites in watershed,

sites/100 km2

NPDES_ALL

Density of major discharge sites in

watershed, sites/100 km2

NPDES_MAJ

Linear distance of sampling site to

nearest major NPDES site, m

DIST_NPDES_NEAR

Average linear distance of sampling site

to all major NPDES site, m

DIST_NPDES_AVG

National Inventory of Dams (U.S. Army Corps of Engineers, 2006; 1:100,000)

Dam storage in basin, liters � 1000/km2 DAMSTOR

Dam density in watershed, dams/km2 DAMDEN

Linear distance of sampling site to

nearest dam, m

DIST_ANYDAM_NEAR

Average linear distance of sampling

site to all dams, m

DIST_ANYDAM_AVG

Linear distance of sampling site to

nearest major dam, m

DIST_MAJDAM_NEAR

Average linear distance of sampling

site to all major dams, m

DIST_MAJDAM_AVG

USGS National Atlas, 2003 (U.S. Geological Survey, 2006; 1:2,000,000)

Density of mineral operation sites,

sites/100 km2

MINOPS

Table 1
Distribution of calibration and validation sites by ecoregion and type. Watershed

characteristics are given as: median (minimum–maximum).

All records Calibration Validation

n = 962 n = 770 n = 192

Number by region

Mountains 582 (60%) 454 (59%) 128 (67%)

Plains 194 (20%) 162 (21%) 32 (17%)

Xeric 186 (19%) 154 (20%) 32 (17%)

Number by type

REF 218 (23%) 173 (22%) 45 (23%)

MED 554 (58%) 440 (57%) 114 (59%)

DIS 190 (20%) 157 (20%) 33 (17%)

Drainage area

(sq km)

43.8 (0.6–35,110) 46.1 (0.6–35,110) 38.6 (0.6–14,220)

Road density

(km/sq km)

0.79 (0.0–9.46) 0.79 (0.0–9.46) 0.83 (0.0–4.31)
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We randomly selected 770 (80%) of the 962 watersheds for model
calibration and reserved 192 (20%) to independently validate the
accuracy of the final best index method. Watershed characteristics,
as well as distribution by broad ecoregion and type (REF, MED, or
DIS) were similar for calibration and validation groups (Table 1).
Ecoregions used in this study were identical to those employed in
the USEPA study (U.S. Environmental Protection Agency, 2005;
Whittier et al., 2007): the western forested mountains (Mountains),
xeric lands (Xeric), and the northern Great Plains (Plains).

2.2. Assembly of GIS data

We assembled GIS data from a number of sources (Table 2), all
of which were available from national coverages. These repre-
sented measures of human population, infrastructure, land cover,
pesticide and nutrient application, water impoundment, flow
diversion, and point-source pollution. All data values were
normalized to percent or per unit-area, and in the case of
‘‘distance’’ variables rank-transformed so that all variables ranged
from low values (no or little disturbance) to high values (more
disturbance). In all there were 33 disturbance variables, some of
which measured to some degree the same broad landscape
phenomenon (e.g. population density and housing unit density
both generally measure ‘‘urbanization’’), and several others were
composites of other variables.

2.3. Evaluating the strength of individual variables

An assessment of the strength of individual variables in
discriminating among watershed disturbance classes was used
as part of the method for index development (described below).
We used the non-parametric Kruskal–Wallis Chi-square (x2) test
(Walpole and Myers, 1978), because most of the data distributions
for the 33 variables tested here were not normally distributed. The
Kruskal–Wallis x2 test is based on comparing the rank sums of two
or more groups; large x2 values represent greater dissimilarity in
rankings among groups. The test was run on the calibration dataset
to assess the distinctness of the endpoint disturbance classes (REF
and DIS) for each of the disturbance variables (Table 3).

2.4. Index development methods

Our goal was to identify the composition (i.e. set of disturbance
variables) and configuration (e.g. scoring/weighting procedures) of
an index that best discriminates between least- and most-
disturbed watersheds, as previously classified by USEPA. Since
testing every combination of variable, scoring, and weighting was
not feasible, we limited a priori the number of combinations by
evaluating four sets of variables (the set of all variables plus three
subsets), for which we varied three scoring methods and three
weighting techniques. This would result in 36 indices to be tested
(4 sets of variables � 3 scoring methods � 3 weightings). Having
identified the best performing index with the calibration dataset,
we evaluated the accuracy of the best set of variables, scoring



Table 3
Kruskal–Wallis Chi-square (x2) values from the calibration dataset (n = 770) for

testing the strength of separating least-disturbed and most-disturbed watershed

classes. p-Values are all <0.0001 except where noted parenthetically. The original

33 variables were also grouped for Principal Components Analysis, creating the five

synthetic variables (PCA class) that made up the Reduced-Synthetic dataset.

Disturbance variable Chi-square value (p-value if �0.0001) PCA class

HUDEN 66.9 POP

ROADDEN 62.1 POP

URBCP_MAINS 60.2 LC

URBCP_BAS 59.4 LC

POPDEN 56.3 POP

PESTIC 55.0 CHEM

PAST_BAS 53.4 LC

URBC_BAS 50.5 LC

URBC_MAINS 49.7 LC

URB_BAS 46.2 LC

URB_MAINS 44.4 LC

NITROGEN 41.5 CHEM

N_P 41.0 CHEM

CROPS_BAS 41.0 LC

PHOSPH 39.3 CHEM

DAMSTOR 29.0 FLOW

DIST_CANAL_NEAR 28.3 FLOW

CANALS_BAS 28.1 FLOW

DIST_ANYDAM_NEAR 27.4 FLOW

DIST_CANAL_AVG 26.2 FLOW

DIST_ANYDAM_AVG 24.7 FLOW

DAMDEN 24.6 FLOW

MINOPS 22.2 PS

DIST_MAJDAM_NEAR 21.3 FLOW

DIST_MAJDAM_AVG 21.2 FLOW

NPDES_ALL 19.8 PS

CANALS_MAINS 19.4 FLOW

NRI_DITCH 16.7 FLOW

DIST_NPDES_NEAR 14.38 (0.0002) PS

DIST_NPDES_AVG 14.35 (0.0002) PS

NPDES_MAJ 14.33 (0.0002) PS

MINING_BAS 5.75 (0.0165) LC

ARTPATH_BAS 1.86 (0.1725) FLOW
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method, and weighting on an independent set of data (validation
set, n = 192). These steps are described in more detail below.

2.4.1. Subsetting variables: Reduced-Original dataset

A reduced dataset was developed (hereafter known as the
Reduced-Original dataset) from the original set of 33 variables. We
first eliminated variables that were correlated (Spearman rho> 0.7).
For any two correlated variables, the variable with the highest x2

value (from Table 3) was selected. This resulted in a reduced set of 11
variables: HUDEN (housing unit density), ROADDEN (road density),
PESTIC (pesticide application), URBCP_MAINS (percent urban + a-
griculture land cover in 600 m mainstem buffer), DIST_CANAL_-
NEAR (site distance to nearest canal), DAMSTOR (dam storage),
MINOPS (mineral operations locations), NPDES_ALL (permitted
discharge locations), NRI_DITCH (percent ditches), DIST_NPDES_-
NEAR (site distance to nearest major discharge location), MINI-
NG_BAS (percent mining land cover in watershed).

Variables where a large number of values are identical are not
likely to provide information that helps differentiate sites (U.S.
Environmental Protection Agency, 2006a), therefore variables that
had values of 0 for more than 90% of sites were also eliminated
(NRI_DITCH and MINOPS). Additionally, variables that were the
least distinct between REF and DIS watersheds (x2 value < 25)
were eliminated (MINING_BAS, NPDES_ALL, and DIST_NPDES_-
NEAR). This final selection resulted in a group of six variables:
HUDEN, ROADDEN, PESTIC, URBCP_MAINS, DIST_CANAL_NEAR
and DAMSTOR.

2.4.2. Subsetting variables: Reduced-Synthetic dataset

A second reduced dataset (hereafter known as Reduced-
Synthetic dataset) was developed from synthetic variables based
on Principal Components Analysis (PCA). We followed the basic
method described by Danz et al. (2007). This consisted of first
grouping the 33 variables into five categories based on professional
judgment: population/roads (POP; 3 variables), land cover (LC; 9
variables), pesticides/nutrients (CHEM; 4 variables), flow
impoundments/diversions (FLOW; 12 variables), and point-source
pollution (PS; 5 variables). Table 3 shows which original variables
were included in each category. For each category we then
performed a PCA, which transforms the original data into a set of
new variables which often summarize the majority of the variation
of the input data in the first few Principal Components (PCs; Danz
et al., 2007). We used the correlation matrix to perform the PCA
instead of the covariance matrix because the variables were
measured in various scales and units. We interpreted the PCs by
examining the factor loadings against the original input variables.
Components beyond the first PC were not easily interpretable,
therefore the first PC was selected for use in all five cases as the best
indicator of overall stress for that category. Values for the first PC
were normalized to range between 0 and 1 for each category,
creating five new disturbance variables corresponding to each
category, given the following abbreviations: PCA1_POP, PCA2_LC,
PCA3_CHEM, PCA4_FLOW, and PCA5_PS.

2.4.3. Subsetting variables: Redundant dataset

The third reduced dataset we created (hereafter known as
Redundant dataset) mimicked the Reduced-Original dataset, but
intentionally included additional variables that were correlated
(similar measures of the same phenomenon) in order to test the
effect of redundancy in an index. All variables that had Spearman
rho > 0.7 when correlated with any of the six variables in the
Reduced-Original dataset were included, as well as those original
six. This resulted in a dataset with 22 variables.

2.4.4. Scoring methods

For each of the four datasets, we evaluated three methods of
scoring data values. Translation of data values into a disturbance
score has been done in a number of ways, often according to how
the data are organized. For example, a global-scale grid-based
approach might assign disturbance points based on the presence/
absence of a disturbance (Sanderson et al., 2002). A common
approach in other studies is assignment of disturbance points
based on percentile or relative values for the population of
watersheds being studied (Host et al., 2005; Wilhelm et al., 2005).
We used three variations of this latter approach.

The first method was termed the range-standardize scoring
method. In this method data values for a variable were
standardized to range from 0 to 10 to produce raw disturbance
scores. The raw scores were multiplied by a weighting factor (see
below), then summed for all variables included in the index. The
summed values were then standardized again so that the final
index values ranged from 0 (lowest disturbance) to 10 (highest
disturbance). This method has been used in a number of studies for
multimetric index creation (McMahon and Cuffney, 2000; Falcone
et al., 2007), and is a method in which every data value that is
greater than 0 contributes to the overall disturbance score.

Our second scoring approach was termed the Percentile > 0
scoring method. This approach assigned raw disturbance scores
based on percentile thresholds of non-zero values. If a data value
was>0 a raw score of 1 was assigned for values>= 1st and<= 20th
percentile, 2 for 21–40th percentile, 3 for 41–60th percentile, 4 for
61–80th percentile, and 5 for 81–100th percentile. Raw scores
were multiplied by a weighting factor, summed, then rescaled to
range from 0 to 10. This method is similar to the previous method
in that all data values greater than 0 contribute to the overall
disturbance score, but the effect of outlier values is minimized by
binning the values into five groups.
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Our third scoring method was termed the Percentile > 50
scoring method. This approach assigned disturbance scores only if
data values were greater than the median value. A raw score of 1
was assigned for values >50 and <= 60th percentile, 2 for 61–70th
percentile, 3 for 71–80th percentile, 4 for 81–90th percentile, and 5
for 91–100th percentile. Raw scores were multiplied by a
weighting factor, summed, then rescaled to range from 0 to 10.
With this method low disturbance values were assumed to not
contribute to the overall disturbance; e.g. there may be roads in the
watershed, but unless they cross the median road density
threshold they are assumed to contribute no disturbance.

2.4.5. Weighting methods

Some variables in a disturbance index are likely to be ‘‘more
important’’ than others with respect to the magnitude of stress they
may cause to stream ecosystems, and should therefore be weighted
accordingly. Several studies have weighted index variables based on
either professional judgment (e.g. Sanderson et al., 2002; Stein et al.,
2002) or on a statistically derived measure from the data themselves
(e.g. multivariate ordination; Wang et al., 2008).

In this study we tested three methods. The first method was no
weighting, i.e. all variables given equal weight of 1.0. The second
method, termed the x2 weighting method, was based on weighting
the x2 values given in Table 3, range-standardized from 0 to 1
(Table 4). With this weighting method the weights correspond to
how well that variable individually discriminated between the
least- and most-disturbed watersheds.
Table 4
Values used for the weighting schemes tested. The Chi-square weights are simply

the values from Table 3 rescaled from 0 to 1. The Principal Components (PC) weights

were derived from weighted loadings of a Principal Components Analysis of all

variables, rescaled from 0 to 1.

Disturbance variable Chi-square (x2) weight PC weight

HUDEN 1.00 0.93

PCA1_POP 0.98 1.00

ROADDEN 0.93 0.47

URBCP_MAINS 0.90 0.90

URBCP_BAS 0.88 0.88

PCA2_LC 0.84 0.99

POPDEN 0.84 0.94

PESTIC 0.82 0.63

PAST_BAS 0.79 0.29

URBC_BAS 0.75 0.85

URBC_MAINS 0.73 0.93

URB_BAS 0.68 0.85

URB_MAINS 0.65 0.72

PCA3_CHEM 0.61 0.90

NITROGEN 0.61 0.89

N_P 0.60 0.89

CROPS_BAS 0.60 0.71

PHOSPH 0.58 0.87

PCA4_FLOW 0.48 0.60

DAMSTOR 0.42 0.11

PCA5_PS 0.41 0.75

DIST_CANAL_NEAR 0.41 0.44

CANALS_BAS 0.40 0.40

DIST_ANYDAM_NEAR 0.39 0.22

DIST_CANAL_AVG 0.37 0.43

DIST_ANYDAM_AVG 0.35 0.19

DAMDEN 0.35 0.00

MINOPS 0.31 0.07

DIST_MAJDAM_NEAR 0.30 0.32

DIST_MAJDAM_AVG 0.30 0.33

NPDES_ALL 0.28 0.16

CANALS_MAINS 0.27 0.06

NRI_DITCH 0.23 0.23

DIST_NPDES_NEAR 0.19 0.56

DIST_NPDES_AVG 0.19 0.57

NPDES_MAJ 0.19 0.52

MINING_BAS 0.06 0.00

ARTPATH_BAS 0.00 0.00
The third weighting method was termed the PC weighting
method. In this method, the derived weights are based on variable
importance as judged from principal components loadings and
eigenvalues (Yang and Shahabi, 2004). PCA for all variables using the
correlation matrix was performed and the first six PCs (proportion of
variance = 0.75) were deemed to be interpretable (this PCA differed
from the one used to create the Reduced-Synthetic dataset, in which
variables were first grouped into five categories, then PCA run on
each category). Component one loaded strongly to agriculture, two
and three to urbanization, four to point-source pollution, five to
diversions/canals, and six to dams. Loadings of each variable for each
component were range-standardized (0–1), then multiplied by the
eigenvalue for that component, giving loadings which were more
heavily weighted for the first PCs. These values were then summed
across all six components for each variable and range-standardized
again to produce ‘‘importance scores’’ ranging from 0 to 1 (Table 4).
In this way variables which had the highest loadings for the most
important PCs were given highest weights.

Applying all combinations of the above factors created the 36
indices tested in this study (4 sets of variables � 3 scoring
methods � 3 weightings). All indices were evaluated by comparing
the REF and DIS watersheds with the Kruskal–Wallis x2 test (test
equality of rankings). Larger (absolute) values for the x2 test
indicated better ability to separate REF and DIS watersheds based
on the USEPA classification. Using the x2 test also allowed
comparison of index results to the x2 values for the individual
variables (Table 3). The final best index method/variable combina-
tion that resulted was then applied to all records in the validation
dataset (n = 192).

2.5. Testing against validation data

We evaluated the accuracy with which the selected index could
be used to classify an independent set of watersheds into reference
and disturbed categories. We calculated the disturbance score for
each watershed in the validation dataset, then used the following
procedure to classify them as least- or most-disturbed. Watersheds
were separated by ecoregion, then ecoregion-specific thresholds
were applied according to the 75th percentile rank of the reference
sites from the calibration data (see Fig. 4). For example, if a
validation site score for a Mountain-region site was higher than 2.3
it was classified as DIS, otherwise it was classified as REF. Those
classifications were then compared against the USEPA classifica-
tion for the known REF and DIS sites. This resulted in either a
correct or incorrect classification for those sites, from which a
percent error could be calculated.

3. Results

The primary method for evaluating indices in this study was the
Kruskal–Wallis x2 statistic produced by comparing our distur-
bance index scores from the USEPA-classified REF and DIS sites.
The statistic is an estimate of the degree to which an index
differentiates between watersheds known to be most-disturbed
and watersheds known to be least-disturbed. The x2 values for the
indices based on reduced data (indices A–AC; Table 5) were almost
uniformly higher than x2 values for indices using all of the original
variables (indices AD–AM). Comparing values in Table 5 allows
evaluation of how changing only one element of an index affected
performance. For example, a comparison of indices A, K, U and AD
shows that all else being equal (i.e. scoring and weighting
methods), an index incorporating all 33 original variables had
poorer performance than indices that had been reduced (at least
some redundancy removed).

The significance of differences between Chi-square values with
equal degrees of freedom may be evaluated using a simple



Table 5
Results of index testing. Higher Chi-square values and represent better ability to separate least- and most-disturbed watersheds (d.f. = 1; all p-values <0.0001). Differences

>4 between Chi-square values are significantly different at the 0.05 level. The dataset and methods from index E (bolded) were also tested against the validation dataset (192

watersheds). Shaded rows represent the scoring method ‘‘Percentile > 0’’, as discussed in the text.

Index designation Variables in index Scoring method Weighting Chi-square value Median REF score Median DIS score

A Reduced-Original (6) Range-standardize Equal 84.4 0.16 0.83

B Reduced-Original (6) Range-standardize x2 84.3 0.19 0.86

C Reduced-Original (6) Range-standardize PC 85.0 0.27 0.97

D Reduced-Original (6) Percentile > 0 Equal 88.2 1.33 4.67

E Reduced-Original (6) Percentile > 0 x2 90.3 1.25 5.42
F Reduced-Original (6) Percentile > 0 PC 88.9 1.84 5.70

G Reduced-Original (6) Percentile > 50 Equal 70.2 0.00 2.07

H Reduced-Original (6) Percentile > 50 x2 71.3 0.00 2.17

J Reduced-Original (6) Percentile > 50 PC 73.1 0.00 2.70

K Reduced-Synthetic (5) Range-standardize Equal 72.5 0.06 0.16

L Reduced-Synthetic (5) Range-standardize x2 72.2 0.09 0.23

M Reduced-Synthetic (5) Range-standardize PC 72.6 0.09 0.22

N Reduced-Synthetic (5) Percentile > 0 Equal 85.2 2.50 5.83

P Reduced-Synthetic (5) Percentile > 0 x2 88.2 2.88 6.11

Q Reduced-Synthetic (5) Percentile > 0 PC 87.0 3.08 6.39

R Reduced-Synthetic (5) Percentile > 50 Equal 79.1 0.40 3.20

S Reduced-Synthetic (5) Percentile > 50 x2 77.0 0.51 3.37

T Reduced-Synthetic (5) Percentile > 50 PC 78.3 0.52 3.51

U Redundant (22) Range-standardize Equal 77.0 0.10 2.20

V Redundant (22) Range-standardize x2 79.0 0.13 1.66

W Redundant (22) Range-standardize PC 76.1 0.21 1.36

X Redundant (22) Percentile > 0 Equal 73.5 1.36 4.56

Y Redundant (22) Percentile > 0 x2 78.7 1.57 5.00

Z Redundant (22) Percentile > 0 PC 74.7 2.40 5.58

AA Redundant (22) Percentile > 50 Equal 63.5 0.32 2.04

AB Redundant (22) Percentile > 50 x2 68.5 0.31 2.06

AC Redundant (22) Percentile > 50 PC 64.3 0.66 2.69

AD All (33) Range-standardize Equal 66.5 0.11 1.76

AE All (33) Range-standardize x2 75.9 0.12 1.60

AF All (33) Range-standardize PC 74.3 0.21 1.21

AG All (33) Percentile > 0 Equal 71.2 1.27 4.15

AH All (33) Percentile > 0 x2 78.1 1.38 4.83

AJ All (33) Percentile > 0 PC 74.7 2.43 5.73

AK All (33) Percentile > 50 Equal 54.2 0.50 1.82

AL All (33) Percentile > 50 x2 66.8 0.26 1.91

AM All (33) Percentile > 50 PC 63.9 0.62 2.68

Fig. 2. Box plots of disturbance index scores (y-axis) from two indices (E and H),

showing distribution of USEPA-classified least-disturbed (REF; n = 173) and most-

disturbed (DIS; n = 157) sites for each. Indices were identical except for the scoring

method. Index E (right side) shows good separation of REF and DIS sites, while index

H (left side) shows much poorer separation.
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transformation to z-scores (Knepp and Entwisle, 1969). This is
given as

z ¼ x2
1 � x2

2

2ðpvÞ ; wherev ¼ degrees of freedom: (1)

The z-score may then be evaluated against a standard normal
distribution. In the context of the Chi-square values discussed
in this paper, where d.f. = 1, this indicates that differences
>4 between any two Chi-square values are significant at
the 0.05 level, and differences >3.2 are significant at the 0.10
level.

Inclusion of correlated variables tended to decrease index
performance. In every case indices based on the Reduced-Original
dataset (indices A–J) performed better than their Redundant
counterparts (indices U–AC). The Reduced-Original data also
performed better in every case than indices using all original 33
variables; and in nearly every case the Reduced-Synthetic dataset
(indices K–T) outperformed both the Redundant dataset and the
original 33 variables as well. This strongly suggested that removing
redundant or highly correlated variables from the index calcula-
tion was beneficial.

The scoring method appeared to have a considerable effect on
index performance. For example, index E (x2 = 90.3) and index H
(x2 = 71.3) are identical in computation except for the scoring
method (Percentile > 0 and Percentile > 50, respectively). How-
ever, the boxplots of data distributions of REF and DIS scores for
those two indices were substantially different, as noted by the
small amount of overlap in the middle 50-percent of the data
inside the box (Fig. 2). For each combination of variables and
weighting, the Percentile > 0 scoring method always outper-
formed the Percentile > 50 scoring method (comparing index
pairs D/G, E/H, F/J, N/R, P/S, Q/T, X/AA, Y/AB, Z/AC, AG/AK, AH/AL,
and AJ/AM). In 9 of 12 comparisons the Percentile > 0 scoring
method also outperformed the range-standardize scoring



Fig. 4. Box plots of disturbance index scores (y-axis) by region for final calibration

data, showing distribution of USEPA-classified least-disturbed (REF; n = 173) and

most-disturbed (DIS; n = 157) sites for Mountains (left), Xeric (middle), and Plains

(right) regions. 75th Percentile thresholds shown are values used for assigning

classification for validation sites from final index model.

Fig. 3. Box plots of disturbance index scores (y-axis) from best index method, based

on index E, applied to validation dataset. Left box plot are scores for sites USEPA

classified as least-disturbed (REF; n = 45); right box plot are scores for sites

classified as most-disturbed (DIS; n = 33).
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method (index pairs A/D, B/E, C/F, K/N, L/P, M/Q, AD/AG, AE/AH,
and AF/AJ).

The weighting method also appeared to influence index
performance, although generally less so than the scoring method.
Indices that used x2 weighting generally outperformed indices that
had equal weighting (9 of 12 comparisons: index pairs D/E, G/H, N/
P, U/V, X/Y, AA/AB, AD/AE, AG/AH, and AK/AL). PC weighting
likewise nearly always outperformed equal weighting (10 of 12
comparisons: index pairs A/C, D/F, G/J, K/M, N/Q, X/Z, AA/AC, AD/
AF, AG/AJ, and AK/AM). For our best scoring method
(Percentile > 0; shaded rows in Table 5), indices using either x2

or PC weighting were always better than indices with equal
weighting.

The best combination of dataset, scoring method, and
weighting (Reduced-Original dataset, Percentile > 0 scoring,
and x2 weighting, respectively), was provided by index E, as
judged by its x2 value. When applied to the validation watersheds,
index E varied significantly (F = 29.0, p < 0.0001; Fig. 3) between
REF and DIS. Using the thresholds derived from regional
distribution of REF and DIS scores of the calibration data
(Fig. 4), 71.1% of REF validation watersheds were correctly
classified (32/45), 63.6% of DIS validation watersheds were
correctly classified (21/33), and overall 67.9% of validation
watersheds were correctly classified (53/78). The kappa coeffi-
cient, representing the agreement above what would be expected
by chance, was 0.40.

4. Discussion

Few studies have had the opportunity to test results of
disturbance index creation against rigorously derived indepen-
dent validation data. Being able to do so allows the effect of
specific aspects of index creation to be systematically tested and
observed.

4.1. Effect of correlated variables

The collection of data which may be redundant or correlated is a
common occurrence. Several solutions are possible: one is to pick
the variable which is believed to be the ‘‘best’’ representative of
each class (e.g. agriculture or water impoundment); another
solution is to reduce the data into new classes using a data
ordination technique (e.g. PCA); and another solution is to do
nothing and use all variables without reduction. No studies to our
knowledge have formally tested the effect of different solutions to
data reduction on index creation.

In this study we tested and compared all three options.
Removing correlated variables created an improved index in every
case where it was explicitly tested (comparing Reduced-Original to
Redundant dataset indices), and in nearly every case indices
created from any reduced dataset were superior to using all
original redundant variables (Fig. 5a). The implication is that
because redundancy is likely to skew the index calculation in favor
of certain classes and may create unnecessary noise, removing
correlated variables is likely to be advantageous.

In comparing the two data reduction techniques tested here,
reducing original variables but continuing to use original data
values (the Reduced-Original dataset), generally performed better
than reducing data using PCA (the Reduced-Synthetic dataset).
Differences, however, were fairly small, particularly for the best
scoring method (Percentile > 0), and generally not different at the
.10 level of significance (i.e. x2 differences were<3.2). The creation
of the Reduced-Original dataset was based primarily on the x2

values derived from the independent USEPA classifications. Since
most studies that rely on watershed disturbance indices do not
have the benefit of independently derived classifications, elim-
inating redundant variables using x2 tests would not be viable.
However, given that data reduction using PCA produced indices
that performed nearly as well as that from x2 analysis, PCA is likely
to be a viable alternative in creating a reduced dataset in most
studies.

4.2. Effect of scoring method

The Percentile > 0 scoring method outperformed both of the
other scoring methods (Fig. 5b). This method differs from the
others in two regards: it allows all data values to contribute to
the overall index score (Percentile > 50 does not), and it bins
data prior to assigning raw disturbance points (Range-Standar-
dize assigns points based on a rescaled 0–10 scheme, allowing
for potentially more skew in the results due to outliers). It seems
therefore advantageous for an index to incorporate these
characteristics in some way. The distribution of index scores
from the Percentile > 0 method also provided a more uniform
gradation of values (Fig. 6) compared to the other scoring
methods. Because the Percentile > 50 method leaves many data



Fig. 5. Comparison of x2 values for indices, varying two elements of index creation and holding one element constant. (a) The effect of redundant variables, varying scoring

method and holding weighting constant (PC weighting). (b) The effect of scoring method, varying weighting, holding dataset constant (Reduced-Original dataset). (c) The

effect of variable weighting, varying dataset and holding scoring method constant (Percentile > 0). Abbreviations for scoring methods: RS = range-standardize,

PCT_GT_0 = Percentile > 0 and PCT_GT_50 = Percentile > 50. Abbreviations for datasets: Red-O = Reduced-Original, Red-Syn = Reduced-Synthetic, Redun = redundant and

All = all original variables.
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values unscored, considerably more sites result in identical 0.0
scores, making them indistinguishable. The Range-Standardize
method likewise forced many scores to low values because of
the presence of a small number of sites with very high data
values. The Percentile > 0 method would be the method of
choice if one of the goals of the index was to allow
differentiation among sites.
Fig. 6. Comparison of distribution of index scores (y-axis) for three indices. Each

index was created with the same input variables in an identical manner (Reduced-

Original dataset, x2 weighting) except for the scoring method. X-axis represents

sites ordered from lowest (0) to highest (10) score for each index (calibration

watersheds; n = 770).
4.3. Effect of variable weighting

Both the x2 and PC weightings improved indices considerably
over equal weighting when used with all 33 variables (i.e.
statistically different at at least the 0.10 level), to a lesser degree
with the Redundant dataset, and less still with indices based on the
two reduced datasets (Fig. 5c). The fact that weighting usually
improved the indices only slightly with the two reduced datasets
would indicate that the information present in the weightings was
already incorporated by reducing the data. We would conclude
that weighting the variables is important to the degree that
redundancy is present in the final dataset; i.e. it is less important,
or even undesirable (if done poorly), if variables have already been
well reduced.

What weighting scheme may be applied? In this study the PC-
based weighting generally did slightly better than the x2 weighting
(8 of 12 comparisons). Given that the x2 weighting was based on
independent information that would ordinarily not be available
(how well the variables individually separated USEPA-classified REF
and DIS sites), and the PC weighting based entirely on the data
themselves, the PC weighting would seem to be a reasonable method
for future applications. It may be that other methods of deriving
weights from the data themselves (e.g. importance of variables
based on clustering), or using best professional judgment may
provide good alternate ways of identifying variable importance. It is
noteworthy that our a priori best professional judgment about which
variables in the Reduced-Original dataset should have the highest
weights (measures of urbanization and agriculture, over measures of
impoundment and flow modification) corresponded generally to the
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weights they ultimately got in both weighting schemes. This result
would suggest that knowledge of the sites themselves and
professional judgment is likely to provide a reasonably good
alternative to data-driven weighting.

4.4. Multimetric index versus individual variables

Although some of our variables were composites (e.g.
URBCP_MAINS integrated urban and agriculture land cover), no
single variable (values in Table 3) was nearly as successful as the
vast majority of multimetric indices tested in this study (Table 5).
The worst of the Reduced-Original indices tested (index G;
x2 = 70.2) was better than the best individual variable tested
(HUDEN; x2 = 66.9), as judged by ability to distinguish REF and DIS
sites.

Although no single variable performed as well as the majority of
our indices, a few of our multimetric indices performed worse than
individual variables. For example, a variation using all 33 original
variables (index AK in Table 5; x2 = 54.2) was outperformed by a
number of individual measures of urbanization and agriculture.
However, by incorporating some reasonably simple rules in index
creation – removing redundant variables, scoring all data values,
employing some logical weighting scheme – a disturbance index is
likely to be a considerably more powerful way of quantifying
anthropogenic disturbance than using any single landscape factor.

4.5. Regionalization

One aspect of index creation that became evident as the indices
were tested was the difference between index scores by region
(Fig. 4). By any index method tested, sites in the Plains region
clearly had the highest amount of anthropogenic disturbance,
followed by the Xeric then Mountains regions. Our method of
assigning scores did not take into account the site’s region:
disturbance points were assigned purely on variables’ data values.
However, when selecting thresholds for classification, it is clearly
important that sites be compared to sites from the same region. As
has been noted elsewhere (Whittier et al., 2007) and was seen here,
least-disturbed sites from a highly urbanized or mechanized
region (e.g. Plains) may have higher disturbance scores than most-
disturbed sites from a more pristine region (e.g. Mountains).

4.6. Watershed classification

There are a number of obstacles to correctly categorizing or
ranking watersheds over a broad area using GIS-derived data. First,
the GIS data themselves are derived from different sources and
agencies, are in different formats (e.g. continuous surface land
cover data versus vector line data representing roads versus point
locations representing dams), may represent varying time periods
which are older than the dependent variable data, and in every case
contain inaccuracy. In some cases the accuracy is roughly known
(e.g. land cover; Stehman et al., 2003), but in most cases accuracy is
unknown (for example, dam or point-source location data). If
accuracy was known and comparable for all data layers the index
calculation could be adjusted accordingly (for example, down-
weighting less accurate datasets), however, the reality is that a
certain amount of unknown noise is added to the index based on
the underlying data. Given that even moderate amounts of error
may hinder identification of patterns in geographic data (Jacquez
and Waller, 1997), the issue of uncertainty in the GIS data is likely
to be significant in identifying subtle differences among water-
sheds.

Second, even if accurate, nationally available GIS coverages may
lack the resolution required to discern the presence of human
activities. This was illustrated in our study, where watersheds
classified by USEPA using a combination of site measurements (e.g.
water chemistry and stream habitat) and aerial imagery appar-
ently lacked evidence of human disturbance in the GIS data. For
example, 42% of the watersheds classified by USEPA as most-
disturbed had <1% agriculture and <1% urban land cover, and 2/3
of those records had complete absence of dams, canals/ditches/
pipelines, pollutant discharge locations, mining land cover, and
mineral operations locations. In short, 28% of the watersheds that
USEPA classified as most-disturbed lacked any disturbance
characteristic in our GIS data. There is no doubt that fine-scale
GIS data for such disturbances as localized dredging, channeliza-
tion, presence of livestock, construction, or logging would have
benefited the indices we created. These were not available to us at
the scale of this study, and remain possibly the greatest drawback
to national or regional implementation of an anthropogenic
disturbance index based on relatively coarse-scale GIS data.

Despite the weaknesses of a disturbance index derived from
national-scale GIS data, our results suggest there may be important
advantages to such an index. Although limited by the coarse
resolution of national-scale GIS coverages, our index correctly
classified more than 2/3 of an independent set of sites as either
least- or most-disturbed. For regional and national assessments
where the cost of obtaining high resolution imagery and site data
are prohibitively high, a disturbance index based solely on GIS data
may be highly beneficial given that the data are already available.
In addition, a nationally consistent index of watershed disturbance
could be used to screen a large number of watersheds to identify
streams that are likely to be in relatively undisturbed condition or,
conversely, streams that are potentially exposed to excessive
anthropogenic disturbance.

5. Conclusion

In this study we derived disturbance index scores that were
used to rank Western watersheds and we attempted to identify
strategies for separating least- from most-disturbed sites. We
evaluated how decisions in index creation (e.g. data reduction,
variable scoring, and weighting) influenced overall performance.
While the variable-specific results given here (which variables
were most discriminating) may be specific to the western United
States, we believe that the aspects of index creation in general are
applicable to any region. We suggest that these procedures will
likely improve performance of a disturbance index: (1) removing
redundant variables, (2) scoring all data values, and (3) incorpor-
ating a logical weighting scheme. Of these three aspects of index
creation, the largest improvements in index performance came
from data reduction, followed by scoring method, and the least
improvement from implementation of weighting.

In this study data reduction to synthetic variables based on
multivariate statistical analysis (PCA) provided nearly as good a
result as selection of original variables based on external
information. Of the three scoring techniques we tested, a method
which scored all data values by binning them to percentile-based
categories proved the most effective. The multimetric indices
developed for this study were overall much more effective in
separating least- and most-disturbed sites than any individual
variable, even though a number of our variables were composites
which combined several disturbance factors (e.g. urban and
agricultural land).

The main conclusion of this study is not in the details of how an
index may be created, or that certain methods are necessarily
better, but that (a) a disturbance index is likely to be a better
screening tool for identifying least- and most-disturbed sites than
an individual variable or class of variables (e.g. land cover), and
that (b) the method of index creation can make a difference. It is
recognized that there are difficulties in implementing a GIS-based
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disturbance index for small-to-medium sized watersheds over
broad regions because of the difficulty in obtaining consistent and
detailed information. It is clear that the success of the disturbance
index will be dependent on the accuracy and resolution of the GIS
data themselves. Nonetheless, as was shown here, thoughtful
implementation of the method for creating an index can make a
difference in results, even at a broad, regional scale.
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